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ABSTRACT

This paper describes a new approach for extending MUItiple SIg-
nal Classification (MUSIC) to underdetermined direction-of-arrival
(DOA) estimation with high resolution by exploiting higher-order
moments. The proposed method maps the observed signals nonlin-
early onto a space of expanded dimensions, in which signal statistics
are analyzed. The covariance matrix in the higher-dimensional space
corresponds to the higher-order cross moment matrix in the original
space of the observed signals. Since the dimensionality of the noise
subspace is increased by the mapping, the proposed method achieves
higher resolution DOA estimation than the standard MUSIC, and
also offers the ability to estimate DOAs in underdetermined condi-
tions. We compared the characteristic of the proposed method with
that of the conventional 2¢g-MUSIC utilizing higher-order cumulants
theoretically and experimentally.

Index Terms— MUSIC, Higher-order statistics, Microphone ar-
ray, Underdetermined DOA estimation

1. INTRODUCTION

In array signal processing, direction of arrival (DOA) estimation
is essential in various applications such as source separation and
noise reduction. MUItiple SIgnal Classification (MUSIC) [1] is a
popular high-resolution DOA estimation method which employs the
subspace analysis of the observed signals. However, MUSIC is re-
stricted by the dimensionality of the covariance matrix because MU-
SIC requires the identification of the noise subspace that is orthogo-
nal to the transfer function vectors of the observed signals. To esti-
mate /N sound sources, M > N sensors are required and the DOA
estimation performance deteriorates as N approaches M. Thus,
MUSIC has a problem in that an increase in the array scale is un-
avoidable when estimating a large number of sources.

To overcome this issue, several extensions of MUSIC have been
proposed that increase the dimensionality of the observed signals
virtually by using higher-order cumulants. For example, a MUSIC-
like algorithm [2] exploits fourth-order cumulants, and its extension,
2¢-MUSIC [3], exploits cumulants of an arbitrary even order. These
methods improve the resolution of DOA estimation and can also es-
timate DOAs in underdetermined conditions, where the number of
sources exceeds the number of sensors, by increasing the signal ex-
pressiveness by way of subspace expansion.

A speech enhancement method called complementary beam-
forming [4] has been proposed for scenarios with more noise sources
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than sensors, and this approach was used for a DOA estimation prob-
lem [5]. Complementary beamforming has also been extended and
explained as the mapping of a signal onto higher dimensional space
using a kernel functions [6]. The approach used in these methods is
especially effective for MUSIC to which dimensionality is critical.
In this paper, utilizing mapping for MUSIC, we propose mapped
MUSIC for underdetermined DOA estimation. By increasing the
dimensionality of the noise subspace with the higher-dimensional
mapping of the observed signal, the resolution of DOA estimation
is improved and DOA estimation in underdetermined conditions
is achieved. We describe a class of mapping suitable for mapped
MUSIC, which allows us to analyze the cross moments of arbitrary
even orders. Also we show an efficient way to calculate the cross
moments for fourth and sixth orders. Moreover, we discuss the
relation between the cross moment used in the proposed mapped
MUSIC and the cross cumulant used in 2¢g-MUSIC, and show that
the analysis of the cross moment is more computationally efficient.
Experimental results in a simulation of speech DOA estimation
reveals that the proposed mapped MUSIC can achieve high reso-
lution DOA estimation similar to 2g-MUSIC but with much less
computational complexity.

2. PROBLEM STATEMENT

Throughout this paper, signals are expressed as complex amplitudes.
Observed signals can be modeled as

X(w7 t) = [1’1([,0, t)v e 7$1\/f(w7 t)]T
N
=Y ai(w)si(w,t) + n(w, ), (1)
i=1
n(w,t) = [nl (w7t)7 co ’”M("J»t)]T7 2
ai(w) = [ari(w), -+, anri(w)]", 3)
where t = 1,--- L is a time frame index, w is the angular fre-

quency, M is the number of sensors, /N is the number of sound
sources, [-]T denotes transpose, s;(w, t) is the complex amplitude
of the ith sound source, z;(w,t) is the complex amplitude of the
signal observed with the jth sensor, n;(w, t) is the complex ampli-
tude of the noise observed with the jth sensor, and a; ;(w) denotes
the transfer function from the ith source to the jth sensor.

In the signal model expressed by Eq. (1), each sensor ob-
serves a mixture of source signals and noise signals. The prob-
lem in this paper is to estimate the DOAs of the source sig-
nals si1(w,t),---,sn(w,t) by finding steering vectors
b(w;01), -+ ,b(w;0n) similar to the transfer function vectors
ai(w), - ,an(w).



3. PROPOSED METHOD

3.1. DOA estimation algorithm of mapped MUSIC

Mapped MUSIC maps the M -dimensional observed vector x(w, t)
onto M’-dimensional Euclidian space (M’ > M) with a nonlinear
function ¢ : CM — CM " and conducts a similar analysis to MUSIC
with vectors ¢(x(w, t)). To estimate DOAs properly with mapped
MUSIC, the information about the correlations between each micro-
phone signal must be retained after mapping. This requirement is
expressed as the following three conditions:

1. The magnitude relation of the norm is retained.

2 = [lyll2 = l[@(x)ll2 = [|(y)]]2 )
2. The origin remains intact.
x=0—¢x)=0 (5)
3. The orthogonality between vectors is preserved.
xy =0 - ¢"(x)p(y) =0 ©)

We describe the DOA estimation algorithm of mapped MUSIC
with the mapping ¢ satisfying Eqs. (4-6). The covariance matrix of
@(x(w, t)) is expressed as

R(w) = Elp(x(w,1))" (x(w,1))], @)

where FE[] denotes the expectation of the argument, and [-] denotes
a complex conjugate transpose. The following equations are given
by the eigen decomposition of covariance matrix R(w),

R(w) = V(0)E(w)V" (w), ®)

V(w) = vi(w), -+, v ()], V@) V(W) =Ty, (9
E(w) = diagle1(w), - - - , enrr (w)],

er(w) >--- > enr (W), (10

M' = dim[p(x(w, )], (11)

where v1(w), - -+, v (w) are the eigenvectors for each eigenvalue
e1(w), -, enr(w), respectively, I; denotes the i-dimensional iden-
tity matrix, diag[-] is a diagonal matrix consisting of elements within
the argument vector, and dim[-] is the dimensionality of the argu-
ment. With N’ denoting the number of large eigenvalues corre-
sponding to the mappings of the directional sound source signals,
we define the spanned subspace by vi(w), -+, vy (w) as the sig-
nal subspace S(w) in the mapping space. Incidentally, this paper
assumes N = N.

S(w) £ span[vi(w), -+, v (W), (12)
where span[-] denotes subspace spanned by argument vectors.
Moreover, its orthogonal complement in span[vy (w), - -+, v (w)]
is defined as the noise subspace. Now, the following relation exists
between the transfer function vectors a;(w),--- ,an(w) and the
vectors v/ y1(w), -+, vy (w) in the noise subspace.

¢ (ai(w))v;(w) =0,
(lvj)e{lzlva]:N/+177M,} (13)
Let us define the following MUSIC score of mapped MUSIC f(w; 0)
utilizing the orthogonality in Eq. (13).
1

f(w;0) £ - , (14)
IR (b(w: 0)vi(@)]

where b(w;0) (||b(w;0)||]2 = 1) is a steering vector for di-
rection 6. The score f(w;0) takes a high value when the 6
value is close to ¢ (b(w;8))p(a;(w)) =~ ||lp(ai(w))||2 for
any ¢ = 1,---,N. Then, the conditions (4-6) result in relation
b (w; 0)a; (w) ~ ||a;(w)||2. Mapped MUSIC utilizes this property
and estimates DOA 6 to make the value of f(w;6) high. Here, note
that mapped MUSIC with the following mapping with no signal
modification is equivalent to MUSIC.

¢1(x) = x. (15)

3.2. Mapping for analysis of 2d-th order moments

As shown in Sect. 3.1, mapped MUSIC can use any mapping func-
tion satisfying Eqs. (4-6), but its property is altered by the choice of
mapping. In this paper, to evaluate the properties of mapping quanta-
tively, we focus on the following mapping ¢ : CM — CM d, which
gives a 2d-th order cross moment matrix as its covariance matrix.

T

d d

ba(x) = [Hwi?i,--~ NIESR (16)
=1 =1

x = [z1, - ,an]T, a7

o _ { a*  (if 1 is odd)
xr

(if 1 is even)
where {-}* denotes a complex conjugate. Then cy; is an index spec-
ifying the element number of vector x for calculating ¢4, and this
is the (k, 1) element of the M? x d index matrix C that arranges d-
repeated-permutations of M in an arbitrary order as its row vectors:

) (18)

1 1 --- 1
1 1 ... 9
C = [cri]m = : ; 19)

where [-];; denotes a matrix consisting of the argument as its (¢, )
element. In practice, the covariance matrix of the mapping of the ob-
served signals ¢q(x(w,t)) is expressed as a 2d-th order cross mo-
ment matrix according to the following equation,

Ra(w) = Elga(x(w, 1)) g (x(w,1)] = [rij]is,
(,j=1,---, M%), (20)

d d *
<Hx§'il> <Hm®71> } QD
=1 =1

We can see the increase in the dimensionality of the covariance ma-
trix from M to M? by the definition of the mapping ¢4 : C* —

CM* . Then mapped MUSIC enables us to estimate the DOAs in un-
derdetermined conditions due to the enhanced expressiveness of the
noise subspace derived from the increase in dimensionality.

Equation (16) gives the mapping ¢ for the analysis of the even-
order cross moment, but these mappings can be replaced by an arbi-
trary mapping ¢, which gives the equivalent inner product:

B4 (X)pa(y) = ¢4 (x)puly), (22)

and there are more useful mappings than that given by Eq. (16) from
various viewpoints. For example, when the degree of the mapping

T'q;j:E

function is two, the following mapping ¢4 : C — RM” satis-
fying Eq. (22) simplifies the calculation of the covariance matrix



and eigenvalue problem because its covariance matrix becomes real-
valued.

5(%x) 2 [@s (%), Ple(x)T, Pim(x)"]", (23)
s (%) 2 [V]z]*|1 < i < M, (24)
bl(x) 2 V2VRe[miz}]2<i< M,1<j<i—1]", (25)

Gim(x) £ V2VIm[zz}]2 <i < M,1<j<i—1]". (26
When the degree is three, there are several dependent elements with
the same values in ¢3 so that the rank of R% becomes the same or

M3+M?
2

less than . Thus we can use the following mapping ¢5 :

M M3 M2 . .
C" —» C =z which satisfies Eq. (22) and collects the same

elements. Such mapping simplifies the calculation of the covariance
matrix and the eigenvalue problem by omitting dependent rows and
columns from the covariance matrix.

B5(x) £ [p3.(%)", b5 (%), D5 (x)T, B5a(x)']",  (27)
B3a(x) £ [V]a:|*2i |1 <i < M]", (28)
b (x) £ Voiz;®|1 <i < M, j # 1], (29)
@5e(x) 2 V2V P21 < i < M, j # 4], (30)
Pha(x) £ V2Vzizjai|l <i < M,j £k #1]". 31)

We evaluate mapped MUSIC with mappings ¢% and ¢4 in Sect. 4.

3.3. Comparison with 2¢q-MUSIC exploiting cumulants

This section discusses the differences between mapped MUSIC
based on an analysis of even order cross moments and 2¢g-MUSIC
based on an analysis of even order cross cumulants. The calculation
of ith-order cumulants requires diverse multiplications of the mo-
ments, whose order is the same or less than ¢, and the computational
cost will increase rapidly as the order of analysis increases. Thus
mapped MUSIC, which can obtain a cross moment matrix with a
single mapping, is simpler than 2¢g-MUSIC and can more easily
expand the statistics of analysis to a higher order. As an example,
with the straightforward analysis of fourth and sixth order statistics,
these methods require the computational costs shown in Table 1,
where M is the number of sensors, L is the number of time frames
of observed signals, and Dim. denotes dimension.

Table 1. Computational costs

Multiplication (times)

Eigen decomposition

2¢-MUSIC (¢ = 2) [[ L(18M™ — 16M?)
complex-valued matrix of M? Dim.
2¢-MUSIC (q = 3) || L(210M° — 206M7)

complex-valued matrix of M Dim.

mapped MUSIC LM* +5M% —2M)

(d=2) real-valued matrix of M~ Dim.

mapped MUSIC L(M° +2M° + M* + 34M° — 6M7)
(d=3) complex-valued matrix of M Dim.

While the 2¢-th order cross cumulant matrix in 2¢g-MUSIC usu-
ally has the full rank of MY, the dimensionality of the mapping ¢4
when d > 2 is less than M? as discussed in Sect. 3.2. In addition,
there is often a further reduction in the rank of the cross moment
matrix because of the environment. As a result, 2g-MUSIC tends to

have sharper peaks in the MUSIC score than mapped MUSIC if there
are a sufficient number of observed signals. However, as we show in
our experiments, mapped MUSIC performs as well as 2¢-MUSIC in
practical conditions with a realistic number of observed signals.

4. EXPERIMENT

This section describes a simulation experiment to verify the effi-
ciency of the proposed mapped MUSIC. We implemented MUSIC
and 2¢-MUSIC (¢ = 2, 3) for comparison.

4.1. Experimental condition

We conducted an evaluation of the DOA estimation and computa-
tional complexity of each method by using a simulated recording of
a speech mixture with a circular microphone array. We established
three different reverberant conditions by using the image method [7]
with different reflection coefficients. To emulate noisy observation,
diffused pink noises [8] with three different SNRs were added to the
observed signals, and to determine the influence of the reflection and
number of sample frames, we also evaluated the performance with
two different lengths of observed signals. Table 2 shows the other
experimental conditions.

Table 2. Experimental conditions

Sensor array form Circular array with radius of 0.1 m
Sound sources Speakers 1.5 m apart from array
# of sound sources | 3,5 | Sampling frequency 16 kHz
# of sensors 4 | SNR 0,10,20 [dB]
Room size SmXxS5m
Reverberation Teo of 0,0.12,0.3 [s]
Duration 3,5 [s]
Frame length 1024 samples
Frame shift length 512 samples
Window function Hamming window

For the evaluation, we employed the root mean squared error
(RMSE) between the estimated direction and the true sound direc-
tion. We evaluated 100 combinations of the positions of three or five
sources selected randomly from the directions {0°,30° - - - ,330°}.
When the MUSIC score had fewer peaks than sources, we added a
penalty equal to the average error for all directions. And to compare
the computational complexity, we recorded processing time of each
method in every trial.

DOA estimation with MUSIC when M < N is performed by
regarding the one-dimensional subspace concurrent with the mini-
mum eigenvalue as the noise subspace in every frequency bin.

4.2. Experimental results

Figures 1-4 show the experimental results obtained under differ-
ent conditions. The results reveal that the proposed mapped MU-
SIC and the 2¢g-MUSIC perform similarly better than MUSIC un-
der all conditions and demonstrate the high performance of DOA
estimation even in underdetermined conditions. Under most condi-
tions, mapped MUSIC with d = 2 performs as well as 2¢-MUSIC.
Mapped MUSIC with d = 3 shows excellent accuracy in terms of
DOA estimation with a high SNR and is the method that performs
the best in this experiment. On the other hand, 2¢-MUSIC shows
slightly poorer performance, although 2g-MUSIC can be expected
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to perform better than mapped MUSIC when these methods exploit
the same order statistics and there are sufficient observed data. The
reason for these results may be the statistical bias derived from the
shortage of observed data, because cumulants tend to be affected
by statistical bias more than moments. Figure 5 shows the average
processing time under these conditions. As a result, our proposed
mapped MUSIC is sufficiently efficient in practical conditions with
a realistic number of observed signals and has much less computa-
tional complexity than 2¢g-MUSIC.

5. CONCLUSION

In this paper, we proposed mapped MUSIC, a high-resolution DOA
estimator, which is applicable even in underdetermined conditions.
We described the mapped MUSIC algorithm and suitable mapping
for DOA estimation. We also discussed the property of the map-
ping function with the degree of d to analyze the 2d-th order cross
moments, and proposed efficient algorithms with which to calcu-
late fourth and sixth order moments. Furthermore, we compared
the characteristics of the proposed method and the conventional
2¢-MUSIC utilizing 2¢g-th order cumulants. We showed that the
proposed methods has much less computational complexity than
2¢-MUSIC. We confirmed that DOA estimation with the proposed
mapped MUSIC technique is as accurate as that obtained with
the conventional 2¢-MUSIC technique but with less computational
complexity.

6. REFERENCES

[1] R. O. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Trans. Antennas Propag., vol. AP-34, no. 3,
pp. 276-280, 1986.

[2] B.Poratand B. Friedlander, “Direction finding algorithms based
on higher order statistics,” IEEE Trans. Signal Process., vol. 39,
no. 9, pp. 2016-2024, 1991.

RMSE [degree]

102

RMSE [degree]

(3]

(4]

(5]

[6

—_

(7]

(8]

== MUSIC

29-MUSIC (q=2)
2g-MUSIC (g=3)
- @~ Mapping MUSIC

—m— Mapping MUSIC
(d=3)

10
SNROdB 10dB 20dB
Teo=0's

SNROdB 10dB 20dB
Tgo=0.12's

SNROdB 10dB 20dB
Teo=0.3s

Fig. 3. Experimental results for 5 sources within 3 seconds.

——MUSIC
2q-MUSIC (q=2)
2g-MUSIC (g=3)

~ @~ Mapping MUSIC

—m— Mapping MUSIC
(d=3)

10
SNROJB 10dB 20dB
Teo=0s

SNROdB 10dB 20dB
Tgo=0.12's

SNROdB 10dB 20dB
Te=0.3 s

Fig. 4. Experimental results for 5 sources within 5 seconds.

10*

I
(=)
~

@ MusIic

10t E29-MUSIC (q=2)

©29-MUSIC (q=3)

10°

B Mapping MUSIC (d=2)

Processing time [sec]

Ep

B

101 0 Mapping MUSIC (d=3)

102

3 sec 5 sec

Duration

Fig. 5. Processing time.

P. Chevalier, A. Ferreol, and L. Albera, “High resolution di-
rection finding from higher order statistics: The 2q-music algo-
rithm,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 2986—
2997, 2006.

H. Saruwatari, S. Kajita, K. Takeda, and F. Itakura, “Speech
enhancement using nonlinear microphone array based on com-
plementary beamforming,” IEICE Trans. Fundam., vol. E82-A,
no. 8, pp. 1501-1510, 1999.

H. Kamiyanagida, H. Saruwatari, K. Takeda, F. Itakura, and
K. Shikano, “Direction of arrival estimation using nonlinear
microphone array,” IEICE Trans. Fundam., vol. E84-A, no. 4,
pp- 999-1010, 2001.

S. Miyabe, Biing-Hwang (Fred) Juang, Hiroshi Saruwatari, and
Kiyohiro Shikano, “Kernel-based nonlinear independent com-
ponent analysis for underdetermined blind source separation,”
in ICASSP, 2009, pp. 1641-1644.

J. A. Allen and D. A. Berkley, “Image method for efficiently
simulating small-room acoustics,” J. Acoust. Soc. Am., vol. 65,
no. 4, pp. 943-950, 1979.

I. A. McCowan and H. Bourland, “Microphone array post-filter
based on noise field coherence,” IEEE Trans. Speech Audio Pro-
cess., vol. 11, no. 6, pp. 709-716, 2003.



